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The U.S. Navy program, Damage Control-Automation for Reduced Manning is focused 

on enhancing automation of shipboard fire and damage control systems.  A key element 

to this objective is the improvement of current fire detection systems.  As in many 

applications, it is desirable to increase detection sensitivity, decrease the detection time 

and increase the reliability of the detection system through improved nuisance alarm 

immunity.  The use of multi-criteria based detection technology offers the most 

promising means to achieve both improved sensitivity to real fires and reduced 

susceptibility to nuisance alarm sources.  An early warning fire detection system is 

being developed by properly processing the output from sensors that measure different 

parameters of a developing fire or from analyzing multiple aspects of a given sensor 

output (e.g., rate of change as well as absolute value). The classification performance 

and speed of the probabilistic neural network deployed in real-time during recent field 

tests have been evaluated aboard the ex-USS SHADWELL, the Advanced Damage 

Control fire research platform of the Naval Research Laboratory. The real-time 

performance is documented, and, as a result of optimization efforts, improvements in 

performance have been recognized. Early fire detection, while maintaining nuisance 

source immunity, has been demonstrated.  A detailed examination of the PNN during 



fire testing has been undertaken. Using real data and simulated data, a variety of 

scenarios (taken from recent field experiences) have been used or recreated for the 

purpose of understanding potential failure modes of the PNN in this application.   

 

1. Introduction 

The U.S. Navy program, Damage Control-Automation for Reduced Manning (DC-

ARM) is focused on enhancing automation of shipboard fire and damage control 

systems.  Improvement of current fire detection systems is a key element of the 

program. Increased detection sensitivity, decreased detection time and increased 

reliability of the detection system through improved nuisance alarm immunity are 

desired. The use of multi-criteria based detection technology [1] offers the most 

promising means to achieve both improved sensitivity to real fires and reduced 

susceptibility to nuisance alarm sources. A multi-year effort to develop an early 

warning fire detection system is currently underway.  The system being developed uses 

the output from sensors that measure different parameters of a developing fire and a 

neural network for fire recognition.  Two test series were conducted on the ex-USS 

SHADWELL [2] to evaluate and optimize candidate prototypes of the early warning 

fire detection system (EWFD).  A third test series was used to validate the optimized 

system.  

 

Improved fire recognition and low false alarm rates were observed using data from full-

scale laboratory tests [3,4,5]. Several different sensor combinations were identified for 

use with a probabilistic neural network (PNN).  Full-scale shipboard tests were 

conducted on the ex-USS SHADWELL to further develop detection algorithms and to 

expand the fire/nuisance source database [6,7]. Using these two data sets, two candidate 

suites of sensors were identified for prototype development. Test Series 1 tested the 

real-time responses of the prototypes [8,9]. Two months later, under different 

environmental conditions, the optimized prototypes were tested with more fire and 

nuisance sources in Test Series 2 [10]. Test Series 1 and 2 were used to optimize the 

prototype, which was then evaluated in Test Series 3 [11,12].   

 



Two data sets (laboratory and shipboard tests) served as the basis for a comprehensive 

PNN training data set used for the subsequent real-time applications. The classification 

of fire and nuisance events and the alarm speed were used to determine the performance 

of the multi-criteria fire detection system in the test series. The EWFD system with the 

PNN developed for real-time detection demonstrated improved classification 

performance as well as faster response times to fires compared to commercial smoke 

detectors. Some problems with the real-time implementation of the algorithm were 

identified and have been addressed.  Using a variety of methods for speed and 

classification improvements, the PNN has been extensively tested and modified 

accordingly. As a result of these optimization efforts, significant improvements in 

performance have been recognized. The best classification performance observed for 

Test Series 1 and 2, while maintaining a fast detection speed, was observed with a 

sensor array consisting of ionization (ION), photoelectric (Photo), carbon monoxide 

(CO), and carbon dioxide (CO2) [11]. 

 

This paper describes the results of Test Series 3 for the ION, Photo, CO, and CO2 

sensors using magnitude and slope information, and background subtraction.  A fire 

classification probability of 0.75 was used in Test Series 1 and 2 as the alarm threshold.  

The use of higher probability alarm thresholds has resulted in improved nuisance source 

rejection while still maintaining fast fire detection. The best probability cut off to 

maximize detection and minimize false alarms was investigated. Finally, detailed 

examination of potential PNN failures during fire testing has been undertaken.  Using 

real data and simulated data, several scenarios have been used or recreated for the 

purpose of understanding the potential failure modes of the PNN in this application. 

 

2.  Experimental 

The tests consisted of different fire scenarios and several different nuisance sources. In 

general, incipient size sources were used to challenge the detection limits of the 

commercial smoke detectors and to establish the minimum detection capability of new 

multi-criteria detection algorithms.  The shipboard tests presented in this study were 

conducted on the second deck of the ex-USS SHADWELL in a space with a volume of 

approximately 144 m3. The sensors were mounted on the ceiling, 2.9 m above the deck.  



All of the sensors operated via gas diffusion to the unit. The fires were typically located 

about 4.3 m from the sensors and the nuisance sources were 1.5 m from the sensors. 

The heights of each source above the floor were selected to be representative of actual 

shipboard conditions. 

  

All sensors were hard-wired to a National Instruments/LabVIEW data acquisition 

system that was used to acquire data and execute the PNN alarm algorithm in real time, 

save the data, and display the data.  During tests, the data acquisition/processing system 

was synchronized in time with the commercial-off-the-shelf (COTS) Simplex smoke 

detection system currently installed on the ship.  The shipboard system consisted of 

ionization detectors (Model 4098-9717) and photoelectric detectors (Model 4098-9714) 

monitored with a single alarm panel (Model 4020).  The alarm sensitivity of these 

detectors was 4.2% obs/m for ionization and 8% obs/m for photoelectric.  A more 

detailed explanation of the data acquisition system can be found in other reports 

[8,10,12].  

 

The PNN analysis of sensor data included pre-processing, pattern calculation and 

scaling.  The vector of input sensor responses, one number for each sensor in the array, 

comprises the set of data that is passed to the algorithm for pre-processing and PNN 

analysis during real-time deployment. All sensor measurements were background 

subtracted (i.e., values were evaluated as a change from an ambient baseline value). 

Data were collected every 2 seconds. The pattern magnitudes and slopes were computed 

and then autoscaled (mean zero and unit variance) using the means and standard 

deviations derived from the training set.  The resulting scaled pattern was then 

submitted to the PNN algorithm for event classification (fire and nuisance) and 

determination of the probability of a fire event.  The training set for the PNN consisted 

of 140 background subtracted response patterns generated in previous laboratory and 

shipboard tests. The training set data were compared at discrete times corresponding to 

the 1.63% obs/m alarm setting of a commercial photoelectric detector.  This method of 

comparing signatures at particular alarm times provides a means of identifying 

parameters with respect to a practical benchmark.  However, it also has the drawback of 



identifying signatures at a singular point in time, therefore, potentially missing key 

signature patterns. 

 

Algorithm development and optimization was executed on a PC using routines written 

in MATLAB, version 5.2 (Mathworks, Inc., Natick, MA).  Many of the routines were 

implemented using the PLS_toolbox, version 2.0c (Eigenvector Technologies, Inc., 

Manson, WA). The classifier used in this study is a Probabilistic Neural Network 

(PNN) [13] that was developed at the Naval Research Laboratory for chemical sensor 

arrays [14]. Originally introduced to the neural network literature by Donald Specht in 

the 1980’s, the PNN is a nonlinear, nonparametric classification algorithm that has been 

described as the neural network implementation of kernel discriminant analysis 

[15,16,17]. The PNN operates by defining a probability density function (PDF) for each 

data class based on the training set data and the optimized kernel width parameter.  The 

PDF defines the boundaries for each data class.  For classifying new events, the PDF is 

used to estimate the probability that the new pattern belongs to each data class.  The 

output probability can be used as a level of confidence in the classification decision, 

which can serve as a guide to reducing nuisance alarms. An improved PNN algorithm 

for chemical sensor array classification has also been developed at the NRL for use in 

real-time sensor systems [18]. 

 

3. Results and Discussion 

Test Series 3 was used to test a revised prototype that utilized four sensors: ION, Photo, 

CO, and CO2 as described in Table 1. Thirty-nine tests were conducted that consisted of 

fire/nuisance sources used during previous tests as well as several new sources. 

 

The detection rate of the PNN verses the false alarm rate is shown in Figure 1 for each 

probability cut off. If the probability of fire is required to reach 100%, then the false 

alarm rate is zero, but only 60% of the incipient fires generated in this test series are 

detected.  As the probability cut off is reduced, the false alarm rate increases.  At a 

probability cut off of 85%, 78% of the fires are detected and less than 20% of the 

nuisance sources are improperly classified.  Both replicates of cutting steel with a torch 

were the only nuisance sources incorrectly classified.  An alarm threshold of 85% 



provides a fire detection rate similar to both the COTS Photo and the combination of 

Photo and ION.  When the COTS Photo and ION sensors are combined with an “OR” 

logic statement, the fire detection rate is better than either sensor used individually, 

however, the false alarm rate is also increased.  The multi-criteria approach used here 

with the PNN classifier has a detection rate similar to the Photo+ION combination and a 

lower false alarm rate. 

 

Table 1.   Details of Prototype Fire Detectors.  

No. Component Instrument Model No. Manufacturer 
1 Ionization smoke detector 1251 with base no. B501 System Sensor 
2 Photoelectric smoke detector 2251 with base no. B501 System Sensor 

3 Carbon monoxide (CO) 
 0-100 ppm TB7F-1A City Technology 

6 Carbon dioxide  (CO2)  
0-5000 ppm 

2001V (EWFD1 and 2 only), 
8002W Ventostat Telaire/Engelhard 

 

 

The classification performance of the three EWFD prototypes is presented in Table 2. 

Each detector is presented as the number of tests correctly classified with respect to 

each of five categories; Overall, Total Fires, Flaming Fires, Smoldering Fires, and 

Nuisances.  It should be noted that the overall and fire classifications are not 100 % for 

any detector because some of the fires were of such small size and duration (e.g., 

smoldering wire samples) that the detectors did not alarm. The EWFD system 

performed better than the COTS smoke detectors.  The EWFD correctly classified more 

events than the COTS detectors in both flaming fires and nuisance source rejection.  

The EWFD performance to smoldering fires was not as good as the COTS Photo 

responses.  The Photo+ION combination provides equivalent fire detection to the 

EWFD, but the nuisance alarm rate is poor.  These results indicate that the PNN 

algorithm with the CO and CO2 signatures provide improved detection performance 

than can be achieved by co-locating ionization and photoelectric smoke detectors. The 

EWFD system is faster than the COTS detectors for smoldering fires and is similar to 

the COTS ION for flaming fires. 

 

 



 

 

 

 

 

 
 
 

 
Figure 1. A Receiver Operator Curve (ROC Plot) showing the detection rate and false 
alarm rate for each PNN probability cut off.  The 85% cut off level for the EWFD (*) is 
compared to the detection rate and false alarm rate of the COTS Photo (∆), COTS ION 
( ), and the combination Photo + ION (✩ ). 
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Table 2.  Summary of Classification Performance of Test Series 3.   

 Overall 
Total, 

% Correct 
(39) 

Total Fires,
% Correct 

 
(27) 

Flaming 
Fires, 

% Correct 
(13) 

Smoldering 
Fires, 

% Correct 
(14) 

Nuisance 
Sources, 

% Correct 
(12) 

EWFD 1 79.5(31) 77.8(21) 100.0 (13) 57.1(8) 83.3(10) 
EWFD 3 79.5 (31) 77.8 (21) 100.0 (13) 57.1 (8) 83.3 (10) 
EWFD 5 76.9 (30) 74.1 (20) 100.0 (13) 50.0 (7) 83.3 (10) 
COTS Ion 56.4 (22) 66.7 (18) 92.3 (12) 42.9 (6) 33.3 (4) 
COTS Photo 69.2 (27) 74.1 (20) 84.6 (11) 64.3 (9) 58.3 (7) 
Photo+ION 61.5(24) 77.8 (21) 92.3 (12) 64.3 (9) 25.0(3) 
 
 
4. Failure Mode Simulations 

A variety of simulations and tests were performed to evaluate several scenarios 

that could occur with a multi-sensor system and to elucidate PNN function, 

performance, and failure. Scenarios include increased noise on 1, 2, 3 channels while 

maintaining the integrity of the remaining channels, increasing the noise on all channels 

simultaneously, single sensor dropout (sensor value = 0), and single sensor erroneous 

values (values set to high or low values).  The data used for testing were a heptane fire 

experiment performed in Test Series 1.  

 

4.1 Noise simulations 

The effect of noise added to the data was investigated by adding noise to each sensor 

alone, while maintaining the integrity of the others. The noise was added to the 

background data (data prior to ignition) in 13 steps from typical S/N levels to a S/N 

level of 3. The test simulates a false alarm when exposed to typical background air. 

Additionally, noise was added to two, three, and finally all sensor channels to probe the 

ability of the PNN to function under extremely adverse conditions. If the S/N is reduced 

to low levels, between approximately 3 and 5, then the PNN false alarms.  When the 

PNN predicts a fire at any point before the actual ignition time, this is considered to be a 

failure state, which cannot be tolerated. 

 

To understand the effects of noise in the sensor arrays, the number of alarms before 

ignition as a function of S/N was investigated for noise added to 1, 2, 3, and finally all 



channels simultaneously. In general, the number of false alarms in background air 

increases as noise is added to more sensors simultaneously. The point immediately 

before the PNN fails is more important in terms of predicting and preventing future 

failures in the field. The pre-failure point is defined as the S/N level immediately before 

the PNN first fails. A summary of the pre-failure points is given in Table 3, in terms of 

the raw input data S/N.  The pre-failure noise level is shown in bold.  The S/N level for 

ION can drop to 4.8 if all the other sensors have typical noise levels. However, a S/N 

level below 5.8 will produce a false alarm if the S/N decreases on the CO2 to 6.6.  These 

pre-failure points may be used to estimate the raw data S/N levels that are tolerable in 

each sensor when one or more sensors may have excessive noise present. 

 

4.2 Extreme Sensor Failure 

Other sensor events that could occur in the field include sensor dropout (zero reading) 

and erroneous sensor values.  There could be a case in the field where activities in the 

compartment cause temporary sensor responses of this kind, such as the use of hand 

radios for communication.  Table 4 shows the results for each of these conditions on 

classification results.  For sensor dropouts, the PNN will classify all but the most 

extreme cases.  One or two sensors failing did not cause the EWFD system to fail. 

When sensor values are above the typical maximum values (constant high value), the 

PNN almost always produces an erroneous alarm condition.  The erroneously high 

values used for each sensor were 120, 5.5, 50, and 2500 for Ion, Photo, CO, and CO2, 

respectively. When sensor values are below typical baseline values, the PNN results 

were variable. The below baseline values used for each sensor were -60, -2.5, -30, and -

1000 for ION, Photo, CO, and CO2, respectively.  The PNN produced an alarm for half 

of the various situations tested. The response times under these conditions have not 

been investigated. 

 

 

 

Table 3.  Summary of PNN Pre-Failure Points Due to Added Noise. 

Sensors Ion S / N Photo S / N CO S / N CO2 S / N 
1 channel noise addition:    
Ion 4.8 14.4 98.3 441.0 



Photo 175.0 4.2 98.3 441.0 
CO 175.0 14.4 3.1 441.0 
CO2 175.0 14.4 98.3 5.1 
2 channel noise addition:    
Ion and CO2 5.8 14.4 98.3 6.6 
Ion and CO 17.8 14.4 5.2 441.0 
Ion and Photo 17.3 4.0 98.3 441.0 
Photo and CO 175.0 6.0 7.4 441.0 
Photo and CO2 175.0 4.3 98.3 68.8 
CO and CO2 175.0 14.4 4.7 71.4 
3 channel noise addition:    
Ion, Photo, and CO 47.5 5.4 5.7 441.0 
Ion, Photo, and CO2 21.5 4.3 98.3 233.5 
Photo, CO, and CO2 175.0 3.9 3.4 258.3 
Ion, CO, and CO2 11.3 14.4 3.7 52.2 
4 channel noise addition:    
Ion, Photo, CO, CO2 44.7 5.7 5.3 406.4 
 



Table 4. Summary of PNN alarm states for sensor dropout (zero-reading), sensor 

responses erroneously high and low. 

 Dropout Sensor High Sensor Low 
Sensor(s) Missed Alarm False Alarm Missed Alarm 
Ion No No Yes 
Photo No Yes Yes 
CO No Yes No 
CO2 No Yes No 
Ion, Photo No Yes Yes 
Ion, CO Yes Yes No 
Ion, CO2 No Yes No 
Photo, CO No Yes Yes 
Photo, CO2 No Yes Yes 
CO, CO2 No No No 
Ion, Photo, CO No Yes Yes 
Ion, Photo, CO2 Yes Yes Yes 
Ion, CO, CO2 No No No 
Photo, CO, CO2 Yes Yes Yes 

 
 

5. Conclusions 

The results of these studies have demonstrated the advantage of a PNN classifier with 

the multi-sensor, multi-criteria approach for fire detection. The current alarm algorithm 

resulted in better overall performance than the commercial smoke detectors by 

providing both improved nuisance source immunity with generally equivalent or faster 

response times. 

 

Additional studies were performed that examined the effects of noise and erroneous 

sensor responses (sensor dropout, and high or low sensor values).  The results of these 

experiments indicate that the PNN is robust to sensor noise and dropout. Unacceptable 

performance was not reached until the S/N level on a single sensor was reduced to 3-5.  

Noise introduced in multiple sensors produced mixed results with higher S/N levels 

producing poor PNN performance.  The PNN classification results were not effected by 

single sensor dropout (flat-line zero). The remaining sensors and the PNN are capable 

of detecting the fires in the absence of one sensor. These effects are entirely acceptable 

for a continuous early warning fire detection system until such time that the problem 

can be corrected. 
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